

Stormwater Capital Improvement Plan
March, 2005

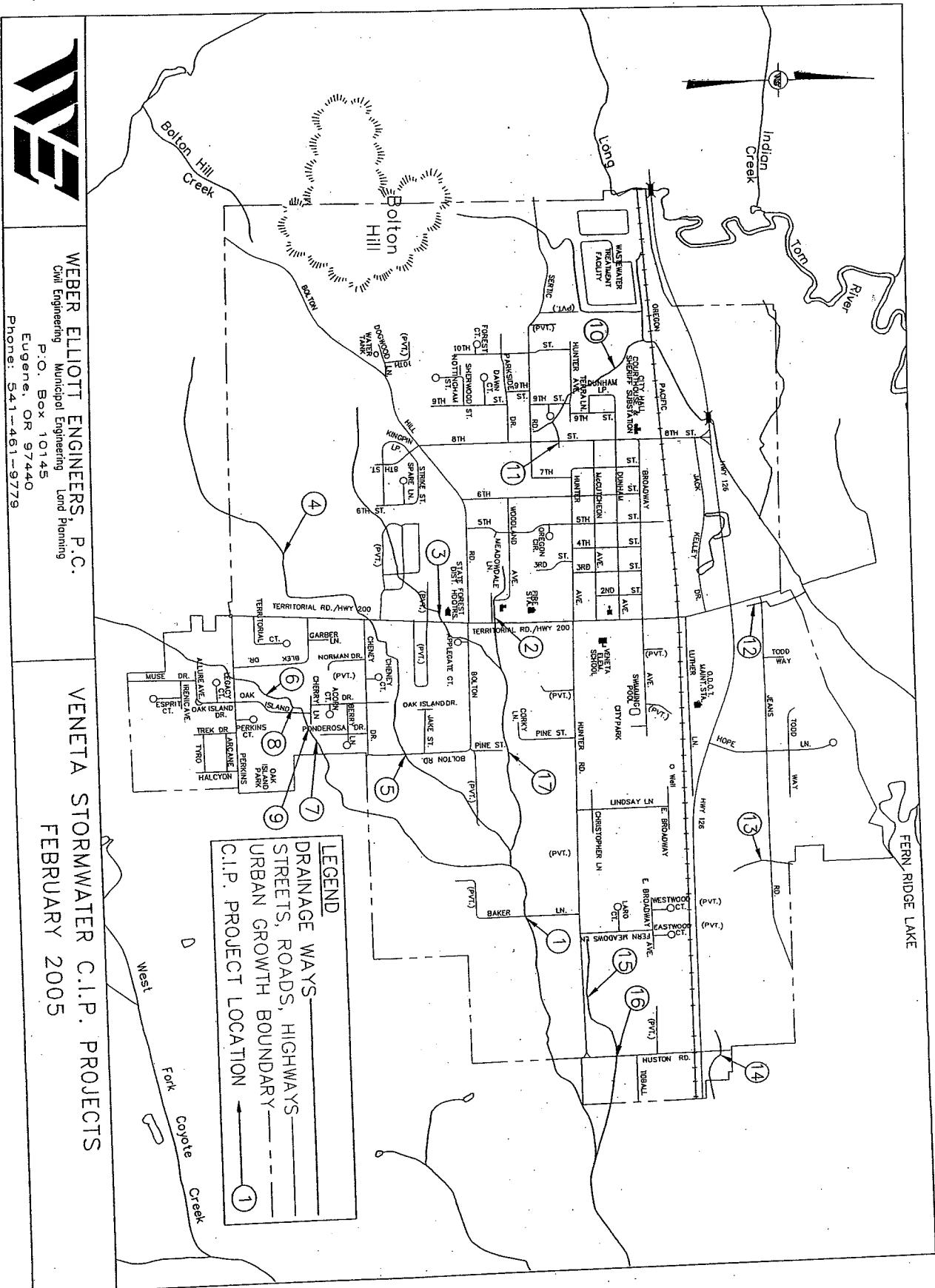
The City of Veneta Stormwater Capital Improvement Plan (CIP) forecasts the City's stormwater capital needs over a 15 year period based on the 1999 City of Veneta Drainage Master Plan and the Comprehensive Plan's goals to conserve open space and protect natural and scenic resources. In 15 years, it is expected that the City's infrastructure will be extended to its Urban Service Boundary as depicted in the 1999 Veneta Public Facilities Plan and that more development will occur in the areas designated Rural Residential.

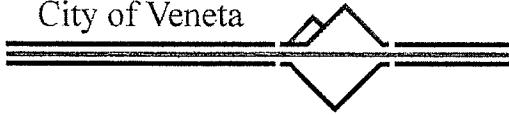
The Stormwater CIP is a plan for construction, land acquisition, and preservation of public stormwater infrastructure in the City's Urban Growth Boundary. This plan proposes projects to alleviate flooding in existing drainage channels, to increase system capacity for future development, and includes three pilot projects designed with elements to conserve open space, improve water quality, and protect and enhance wetland areas.

The Stormwater CIP totals approximately \$3.5 million in projects of which approximately \$804,900 are eligible to be funded from Systems Development Charges (SDCs). Eligibility for SDC funding is determined by the amount of flow attributed to new growth. For example, if current flow is 15 cubic feet per second and future flow is 20 cubic feet per second, the percentage of the capital project eligible for SDC funding is 25% ($20-15/20 = 25\%$).

Funding for Stormwater CIP projects will come from SDCs, stormwater fees, and grant money, if available. If grant money is used for projects identified as SDC eligible, the SDC funding will be adjusted accordingly. For each year of this CIP, projects will be prioritized based on anticipated funding levels, community input, and emerging development areas.

CIP Development and Review


This CIP was developed by a group consisting of City staff, Lane Council of Government staff, the City's Engineer at Weber Elliott Engineers, P.C., and consultants from URS Corporation.


On February 14, 2005, notice was sent to persons on our interested parties list and to the West Lane News and the Register Guard newspapers of the intent to adopt the Stormwater CIP on March 14, 2005. The Planning Commission will review the CIP on March 7, and public comment is invited. Written comment will be accepted until March 11.

The Council may modify the plan and list at any time. If a system development charge will be increased by a proposed modification of the list to include a capacity increasing capital improvement, as referenced in Section 6(2) of Ordinance 452, the City shall provide at least thirty (30) days notice of the proposed plan modification to persons who have requested written notice under Section 15(2) of Ordinance 452. A hearing on such proposed plan modifications will be held if the City receives a written request for such a hearing within seven (7) days of the

Updated Stormwater Capital Improvement Plan - Prepared and edited by Stormwater Management, Inc.

MARCH 8, 2003

Stormwater Capital Improvement Plan
March, 2005

The City of Veneta Stormwater Capital Improvement Plan (CIP) forecasts the City's stormwater capital needs over a 15 year period based on the 1999 City of Veneta Drainage Master Plan and the Comprehensive Plan's goals to conserve open space and protect natural and scenic resources. In 15 years, it is expected that the City's infrastructure will be extended to its Urban Service Boundary as depicted in the 1999 Veneta Public Facilities Plan and that more development will occur in the areas designated Rural Residential.

The Stormwater CIP is a plan for construction, land acquisition, and preservation of public stormwater infrastructure in the City's Urban Growth Boundary. This plan proposes projects to alleviate flooding in existing drainage channels, to increase system capacity for future development, and includes three pilot projects designed with elements to conserve open space, improve water quality, and protect and enhance wetland areas.

The Stormwater CIP totals approximately \$3.5 million in projects of which approximately \$804,900 are eligible to be funded from Systems Development Charges (SDCs). Eligibility for SDC funding is determined by the amount of flow attributed to new growth. For example, if current flow is 15 cubic feet per second and future flow is 20 cubic feet per second, the percentage of the capital project eligible for SDC funding is 25% ($20-15/20 = 25\%$).

Funding for Stormwater CIP projects will come from SDCs, stormwater fees, and grant money, if available. If grant money is used for projects identified as SDC eligible, the SDC funding will be adjusted accordingly. For each year of this CIP, projects will be prioritized based on anticipated funding levels, community input, and emerging development areas.

CIP Development and Review

This CIP was developed by a group consisting of City staff, Lane Council of Government staff, the City's Engineer at Weber Elliott Engineers, P.C., and consultants from URS Corporation.

On February 14, 2005, notice was sent to persons on our interested parties list and to the West Lane News and the Register Guard newspapers of the intent to adopt the Stormwater CIP on March 14, 2005. The Planning Commission will review the CIP on March 7, and public comment is invited. Written comment will be accepted until March 11.

The Council may modify the plan and list at any time. If a system development charge will be increased by a proposed modification of the list to include a capacity increasing capital improvement, as referenced in Section 6(2) of Ordinance 452, the City shall provide at least thirty (30) days notice of the proposed plan modification to persons who have requested written notice under Section 15(2) of Ordinance 452. A hearing on such proposed plan modifications will be held if the City receives a written request for such a hearing within seven (7) days of the

date the proposed modification is scheduled for adoption. If no such request is received within this time period, a hearing is not required, but may be held in the Council's sole discretion.

Following adoption of the CIP by the City Council, the *SDC Costs* from the CIP spreadsheet will become the basis for a Stormwater Systems Development Charge. Projects with a timeline beginning in 2006 will be prioritized and a few of those projects will become part of the FY05/06 Budget.

MEMO

FROM: Weber Elliott Engineers

DATE: 11/2/2004

TO: Margaret Boutell
City of Veneta – Community Services Director
88184 8th Street
Veneta, OR 97487

CC:

RE: OREGON DEPARTMENT OF FORESTRY: Stormwater Management Feature

Job Number: 04-44

This memo describes the basic assumptions and performance parameters for the preliminary design of a stormwater management facility located south of the Oregon Forestry Department facilities in Veneta, Oregon.

Background:

This is a preliminary assessment of a type of stormwater management facility that could be located in a drainage basin designated basin 3.2 in the drainage master plan. The basin collects drainage from Bolton Hill to the west, through the Bowling Green Subdivision and across the Territorial Sports Fields to a small culvert that crosses Territorial Highway from west to east. The basin encompasses 48 acres and has a slope of approximately 0.5 percent as the basin approaches Territorial Highway. The basin has a time of concentration for the 10 year frequency storm of 59 minutes.

Assumptions:

It was assumed that the facility would manage the pre-development 10 year storm with a swale velocity of less than one foot per second. It was also assumed that the stormwater management feature would efficiently manage the incremental increase in stormwater from the pre-development condition to the post development condition without a significant change in the flow out of the facility.

Assessment of Feasibility Cost

Weber Elliott Engineers, P.C.

Flow Modulation Facility and Possible Wetland Mitigation site.

JTE

11/2/2004

Job No: 04-44

Problem: Prepare feasibility cost estimate for stormwater management facility at Oregon Department of Forestry Site: Veneta Oregon.

Location: 500 feet South of Bolton Hill Road intersection with Territorial Highway.
Basin 3.2 in Storm Water Study

Given:

10 yr. Storm Q:	15 cfs
10 yr Storm Future:	19 cfs
Future Time of Concentration:	59 minutes
Basin Size:	48 Acres
Slope near highway:	0.005 feet/foot

Assume:

No Land Costs - Donated by State of Oregon.
facility manages 4 cfs (19 - 15)

Time of Concentration = 59 min.	59 Minutes
Laging leg of hydrograph = 1.6	94.4 Minutes
Total Hydrograph Time:	153.4 Minutes
Excavation requirements:	1.5 Feet

Design:

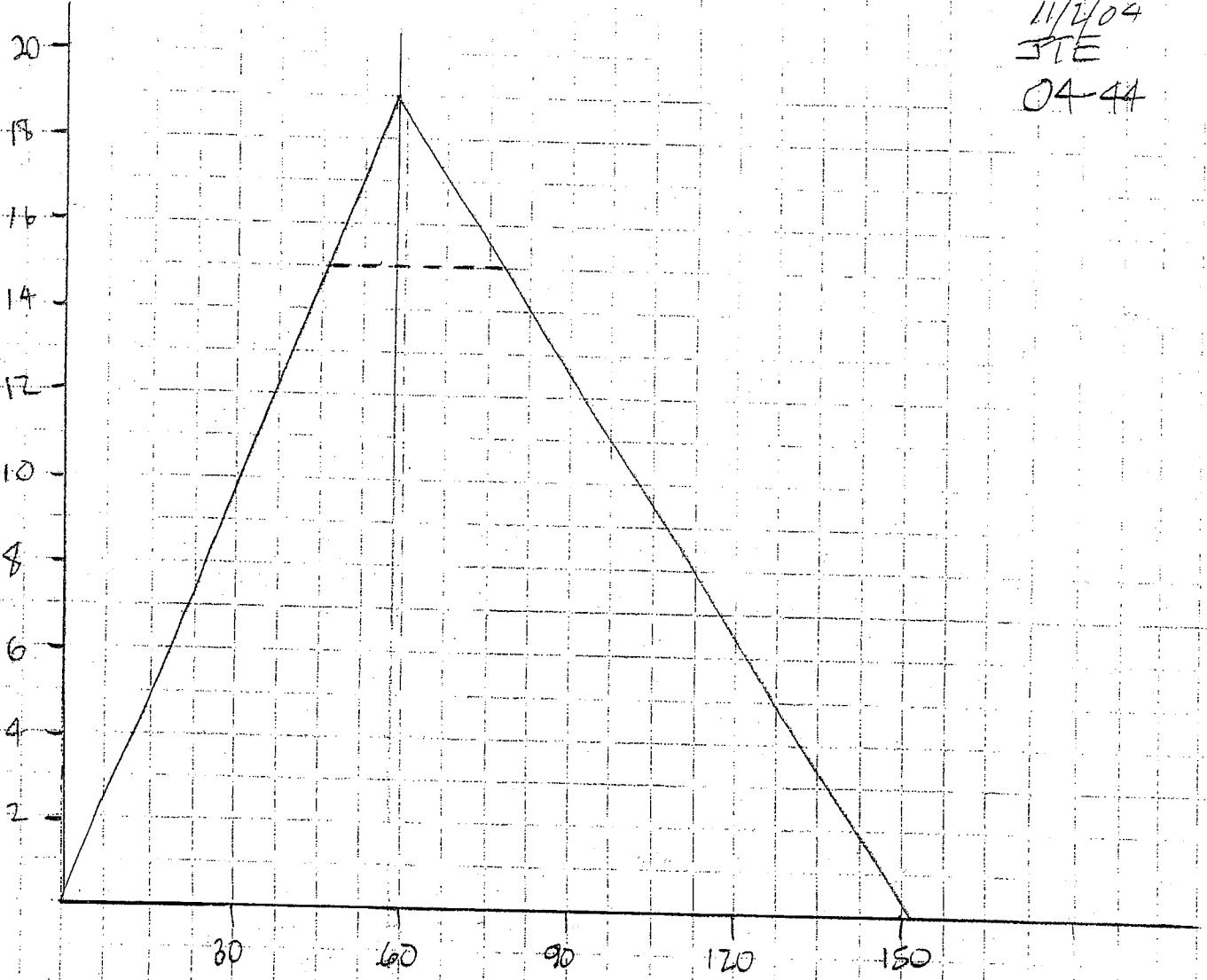
Time Storm exceeds 15 cfs	27 Minutes = Minimum Detention
Minimum Detention Volume:	3240 Cubic Feet. (Area Under Hydrograph Curve)
Assume depth:	1 depth
Facility Length:	200 feet
Width:	16.2 feet
Basic Swale:	30 Feet Wide - assumes 1 fps at 15 cfs.
Total Width	47 feet
Size	9400 Square Feet
Size	0.22 Acres

Assessment of Feasibility Cost

Weber Elliott Engineers, P.C.

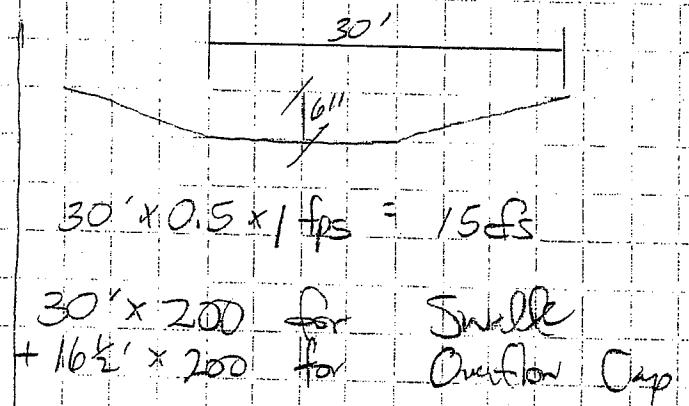
JTE

Flow Modulation Facility and Possible Wetland Mitigation site.


11/2/2004

Job No: 04-44

Preliminary Cost Estimate


ITEM	UNIT	QUANT.	UNIT COST	TOTAL COST
CONSTRUCTION STAKING/SURVEYING	L.S.	1	600	\$600
MOBILIZATION - BONDS AND INSURANCE	L.S.	1	1200	\$1,200
TRAFFIC MANAGEMENT	L.S.	ALL	250	\$250
TEMPORARY SIGNS	SQ.FT.	16	21	\$336
INLET PROTECTION	EACH	2	65	\$130
SILT FENCE	LIN.FT.	60	12	\$720
SEEDING	ACRE	0.22	1840	\$405
PLANTING AND COVER	PLANTS	35	90	\$3,150
CLEARING AND GRUBBING	ACRE	0.22	1850	\$407
EXCAVATION	CU.YD.	525	5.6	\$2,940
EXCAVATION HAULING	CU.YD.	525	1.8	\$945
SWALE DRESSING	CU.YD.	30	15	\$450
12-INCH REIN. CONC. CULV. PIPE IN PLACE	LIN.FT.	24	32	\$768
CONCRETE INLETS, TYPE CG-3	EACH	2	960	\$1,920
STRUCTURAL CONCRETE, CLASS 3300	CU.YD.	4	400	\$1,600
CONSTRUCTION CONTINGENCY			\$1,582	
BASIC CONSTRUCTION TOTAL			<u>\$17,403</u>	
ENGINEERING:			\$8,400	
ADMINISTRATIVE AND PERMITS			\$4,200	
PROJECT CONTINGENCY			\$6,001	
TOTAL CONSTRUCTION COSTS:			\$36,003	

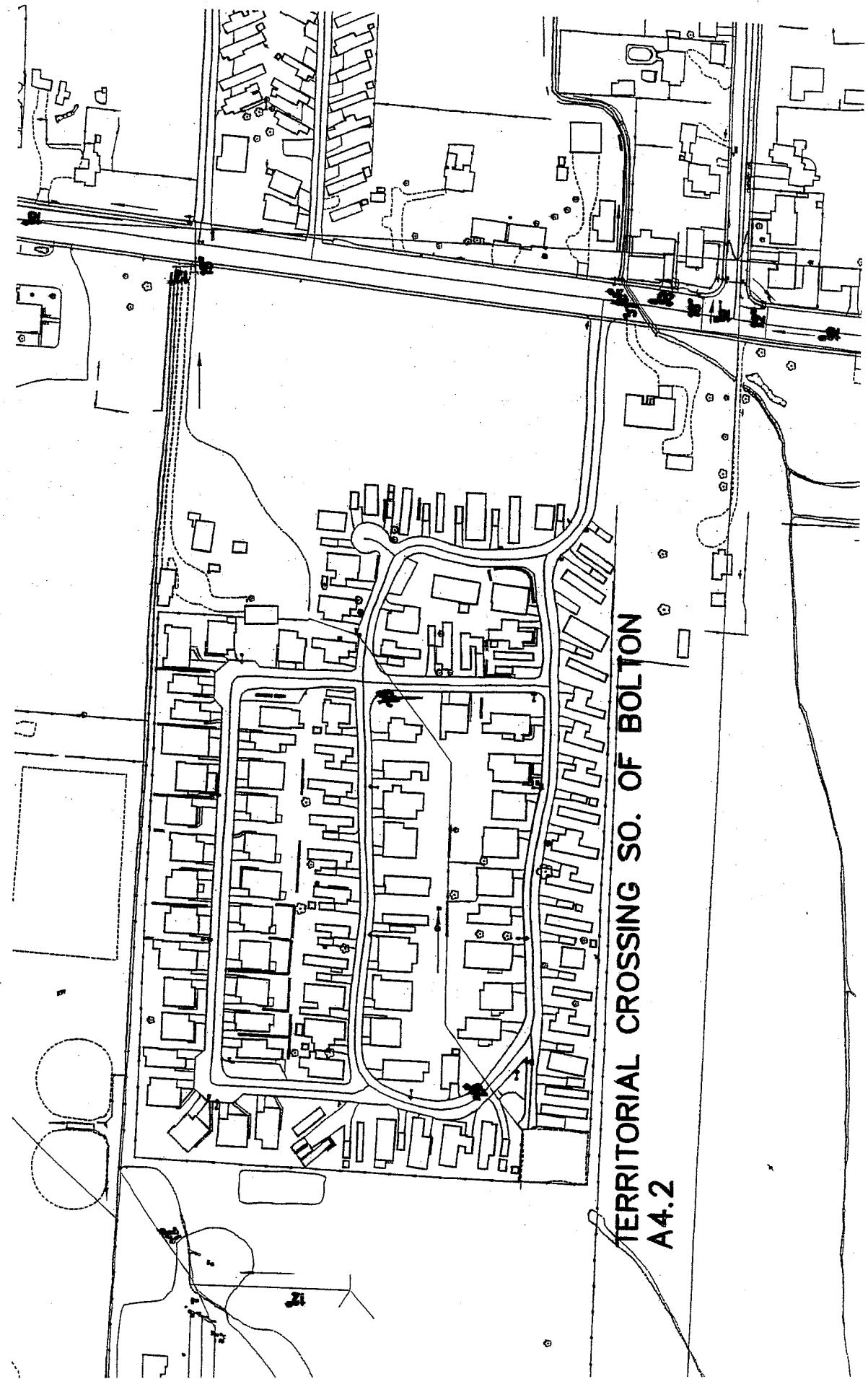
11/16/04
STE
04-44

Simple Design Parameters

Channel Depth
15 ft \times 17 fps
→ 525

$$30' \times 0.5 \times 1 \text{ fps} = 15 \text{ ft}$$

$30' \times 200$ for Simple
 $+ 16\frac{1}{2}' \times 200$ for Overflow Cap


Assume

$$15' \times 47 \times 200 = 14,100 \text{ ft}^3$$

$$\text{Area} = 200 \times 47$$

525 cu.

1" = 200' t

PROJECT SUMMARY SHEET

Project Title: Creek at Teepee Burner (CIP #1)

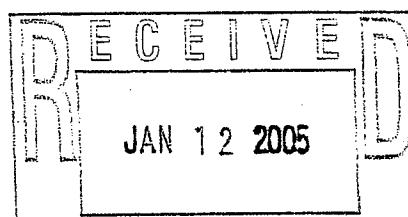
Problem Description: Based on the 1999 master plan, flooding is anticipated at multiple locations on the channel that flows between Perkins Road and Cherry Street. In addition, runoff from developed areas carries pollutants such as sediments, metals, nutrients, bacteria and hydrocarbons.

Project Description: Construct the following projects to provide conveyance improvements, off channel storage, and water quality improvements (see Figure 1).

- Replace three existing driveway culverts along Oak Island Dr. with bridges.
- Construct on-channel backwater areas along Oak Island Dr. for improving water quality.
- Construct off-channel backwater area west of the channel and east of the teepee burner site for flow attenuation and settling of particulates.

Project Benefits:

- Expected to eliminate overtopping of driveway culverts along the creek (see Figures 2 and 3), and improve stormwater quality through processes of biological uptake, filtration, and settling of suspended particulates and associated pollutants. It should be noted that the increases in channel capacity are mostly offset by the increase in roughness associated with vegetating the channel for water quality benefits. Based on anecdotal information, flooding along the street occurs mostly due to backup from downstream and is not associated with channel capacity along Oak Island Drive (see CIP #2).
- Expected to provide some relief to flooding that is occurring upstream on Blek Dr.

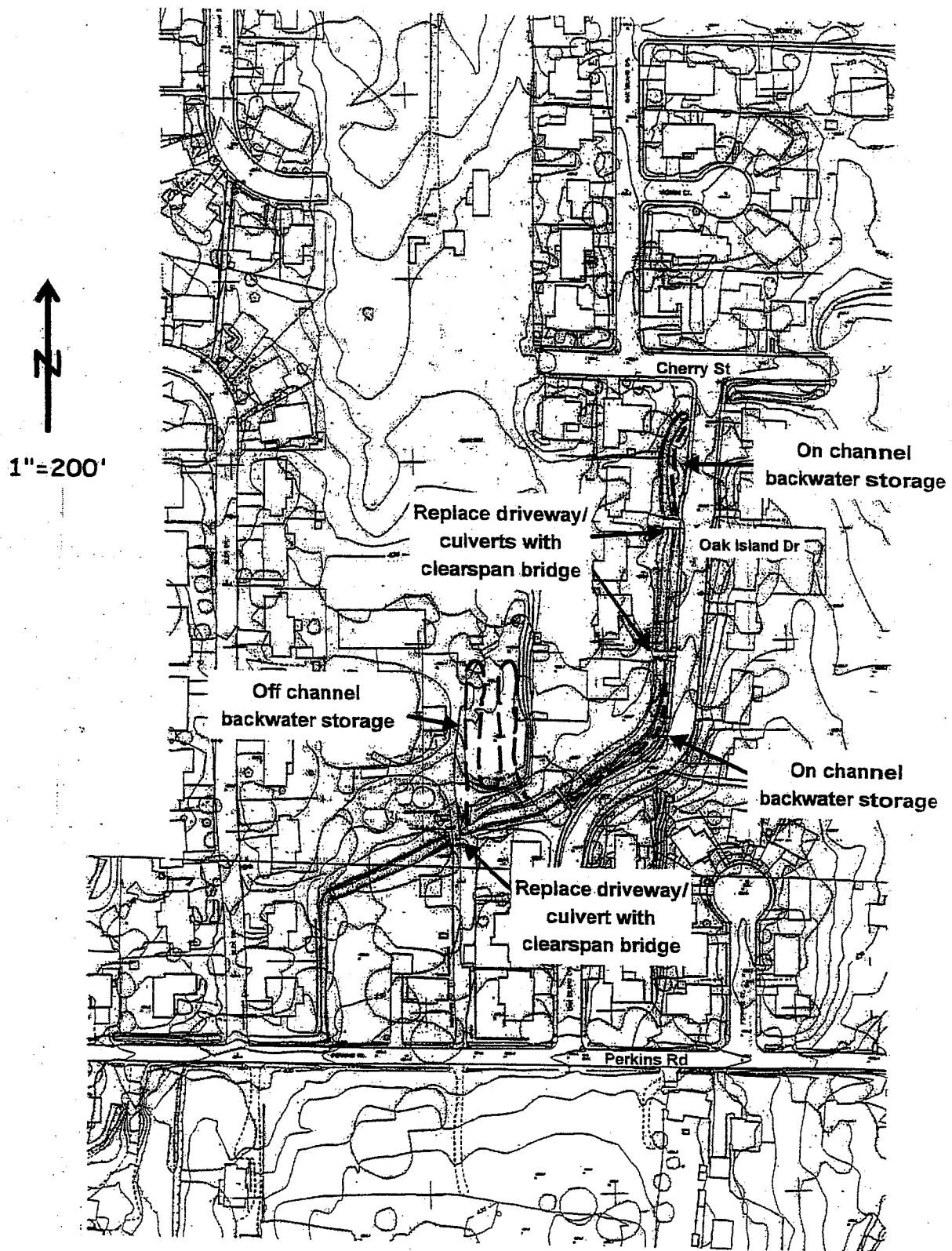

Estimated Costs:

Construction Cost	\$ 773,325
Site Acquisition	required
Engineering & Administration	\$ 231,998
Capital Project Implementation	\$ 1,005,323
Annual Maintenance	TBD

Note: Does not include costs related to permitting (i.e., 1200C, 404 and DSL).

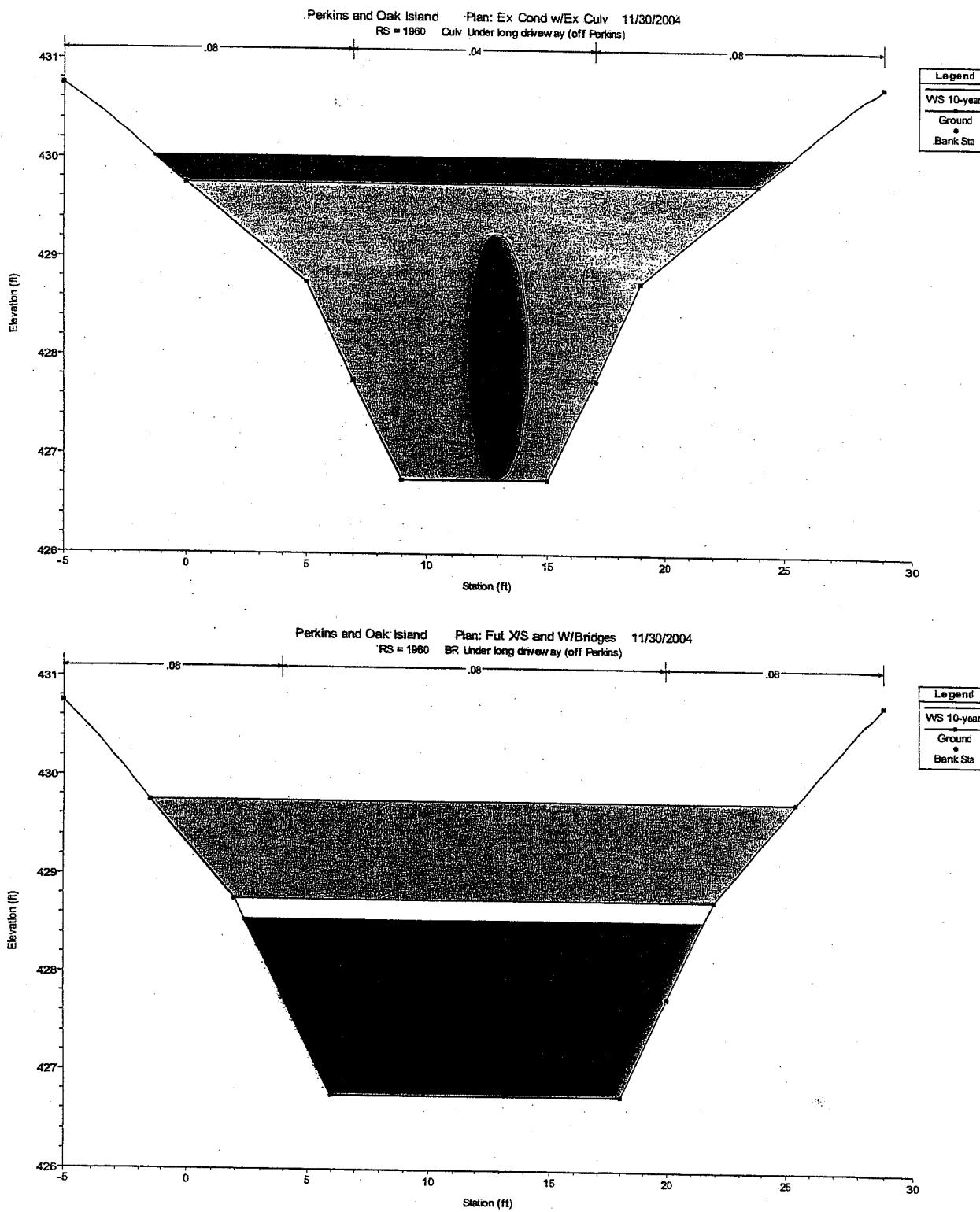
Maintenance Requirements: Only minimal maintenance should be required after the landscape is established. Maintenance activities would include occasional weeding to control noxious weeds or replanting and periodic sediment removal.

Assumptions: Quarter-acre site on the east side of the long driveway on the teepee burner site is completely converted to meandered channel for off-stream treatment and flow attenuation. We assumed 200 feet of area adjacent to and east of the channel along Oak Island Dr. could be converted to an enhanced stream edge. All driveway culverts are converted to bridges. Detention storage is not provided. Flow attenuation is accomplished through some increased capacity of the channel.



Project Cost Estimate
Creek at Teepee Burner (CIP #1)
City of Veneta, OR

Date: November 12, 2004


<u>Item</u>	<u>Description</u>	<u>Quantity</u>	<u>Unit</u>	<u>Unit Price</u>	<u>Subtotal</u>	<u>Total</u>
1	MOBILIZATION (5%)	1	LS	\$29,500	\$29,500	\$29,500
2	TRAFFIC CONTROL	80	HRS	\$32	\$2,560	\$2,560
3	DEMOLITION & CLEARING					
	Clearing, Grubbing, and Haul (included under #4 below)	0.00	AC	\$12,000	\$0	
	Demo & haul existing driveways	3	EA	\$500	\$1,500	\$1,500
4	BACKWATER STORAGE*					
	Off-channel area (teepee burner site)	400	LF	\$820	\$328,000	
	On-channel areas	200	LF	\$900	\$180,000	\$508,000
5	EROSION CONTROL (for bridge construction)					
	Water Pollution / Erosion Control	1	LS	\$3,000	\$3,000	
	Silt Fencing	300	LF	\$7	\$2,100	\$5,100
6	STRUCTURES					
	Driveway Bridge	3	EA	\$20,000	\$60,000	\$60,000
7	LANDSCAPE ESTABLISHMENT (3 Years)					
		1	LS	\$12,000	\$12,000	\$12,000
	SUB TOTAL					\$618,660
	25% CONTINGENCY					\$154,665
	TOTAL CONSTRUCTION COSTS					\$773,325
	SITE ACQUISITION COSTS					required
	ENGINEERING / ADMINISTRATION (30%)					\$231,998
	TOTAL ESTIMATED CAPITAL PROJECT IMPLEMENTATION COSTS					\$1,005,323
	ANNUAL MAINTENANCE					TBD

* = Cost includes planting, erosion control, and clearing and grubbing.

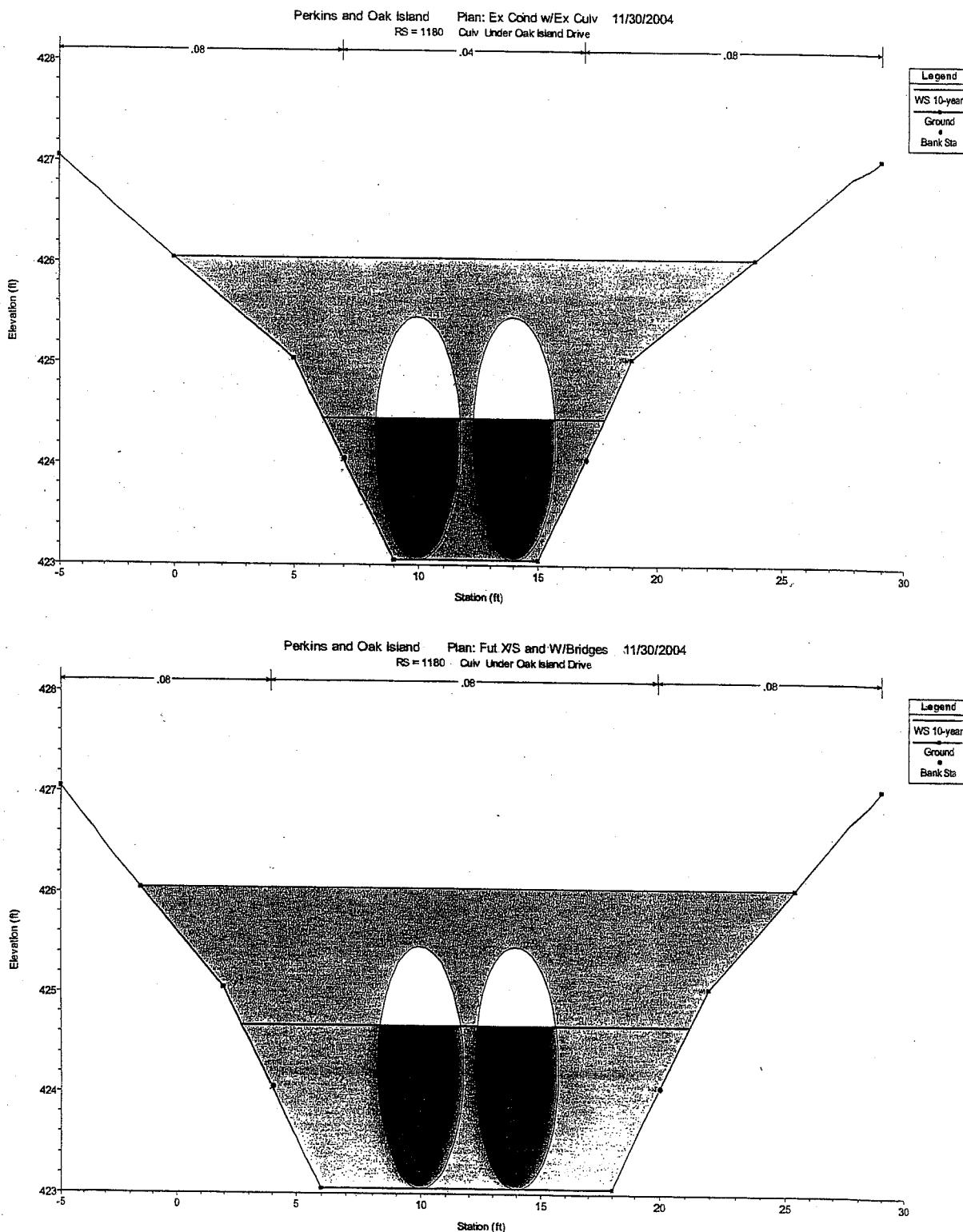

CIP #1 - Channel near Oak Island Drive between Perkins Road and Cherry Street

FIGURE 2

Simple bridge to provide access to teepee burner on current driveway assumes one-foot thickness and same top chord elevation.

FIGURE 3

One tenth foot increase attributable to increased resistance due to full (width and length) channel water quality implementation

PROJECT SUMMARY SHEET

Project Title: Creek in Lot 9 (CIP #2)

Problem Description: Based on the 1999 master plan, flooding is anticipated at multiple locations on the channel that flows east of Cherry Street downstream to E Bolton Hill Rd. Based on anecdotal information, this water also backs up to Oak Island Drive producing local street flooding. In addition, runoff from developed areas carries pollutants such as sediments, metals, nutrients, bacteria and hydrocarbons.

Project Description: Construct the following projects to provide conveyance improvements, off-channel detention, and water quality improvements (see Figures 4, 5 and 6).

- Construct on-channel backwater areas for improving water quality.
- Construct off-channel storage for detention and settling. Pond will include maintenance access. See Figures 5 and 6 for examples.
- Provide landscaping for stream habitat and a trail for recreational use to connect to recreational facilities east of the greenway (see Figure 6).

Project Benefits:

- Expected to reduce private property flooding along the creek and improve water quality through processes of biological uptake, filtration, and settling of suspended particulates and associated pollutants.
- Provides enhanced recreational functions.
- Expected to reduce the frequency of channel maintenance requirements.

Estimated Costs

Construction Cost	\$ 550,375
Site Acquisition	required
Engineering & Administration	\$ 165,113
Capital Project Implementation	\$ 715,488
Annual Maintenance	required

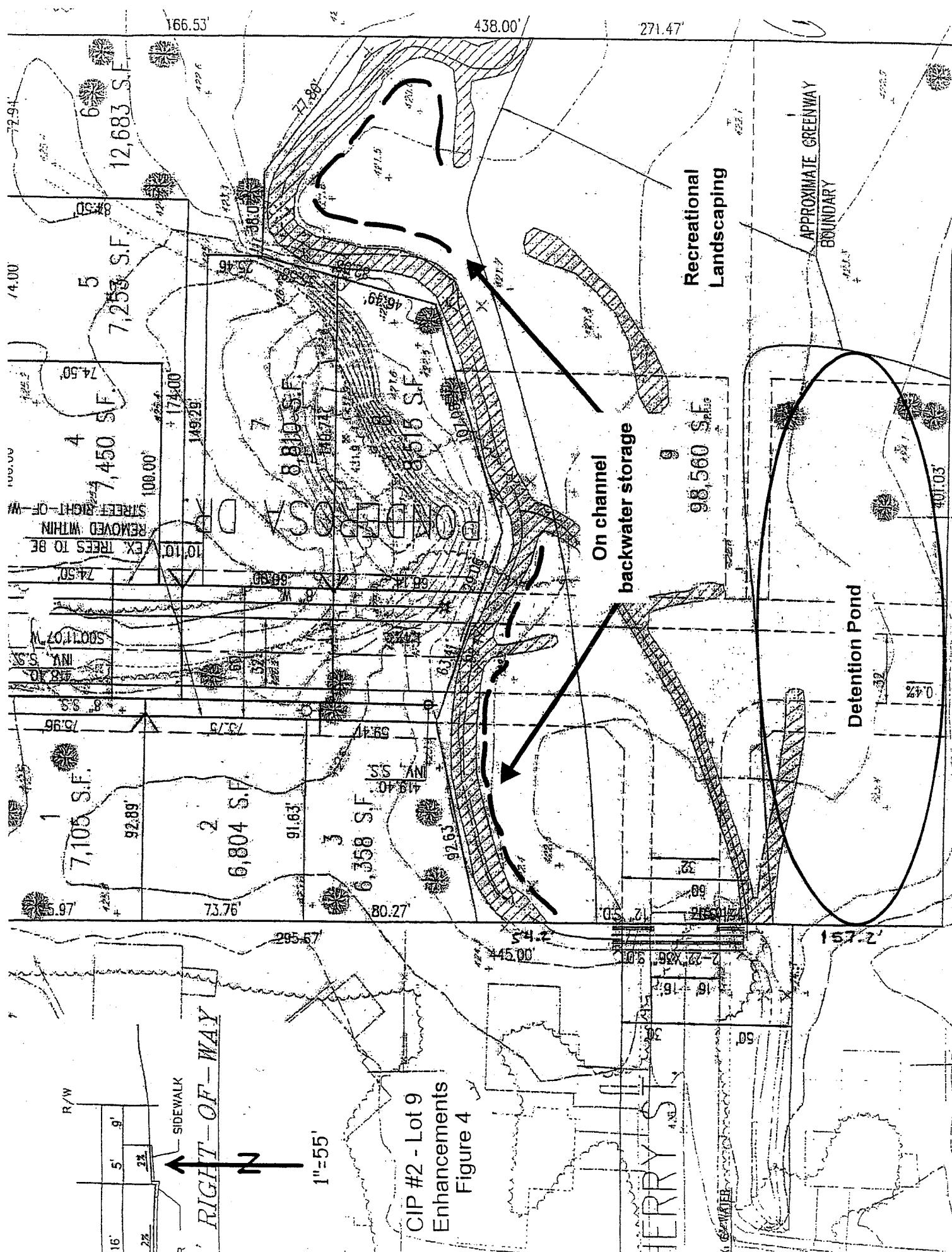
Note: Does not include costs related to permitting (i.e., 1200C, 404 and DSL).

Maintenance Requirements:

Detention Pond: Inspect and clean inlet and outlet, maintain vegetation, inspect sediment loading, remove sediment, remove debris, inspect separation berm.

Channel backwater areas: Little required after landscape establishment. Occasional weeding to control noxious weeds or replanting.

Assumptions:


Pond is one acre and 4 ft deep. 200 feet of culvert would be needed to get water to and from the stream (to pond). Half of 600 feet between Cherry St. and E. Bolton Hill Rd. is converted to enhanced stream edge on one side. Additional unspecified landscaping would be provided within Lot 9 to enhance recreational uses.

Project Cost Estimate
Creek in Lot 9 (CIP #2)
City of Veneta, OR

Date: November 12, 2004

<u>Item</u>	<u>Description</u>	<u>Quantity</u>	<u>Unit</u>	<u>Unit Price</u>	<u>Subtotal</u>	<u>Total</u>
1 MOBILIZATION (5%)		1	LS	\$21,000	\$21,000	\$21,000
2 TRAFFIC CONTROL		80	HRS	\$32	\$2,560	\$2,560
3 DEMOLITION & CLEARING						
	Clearing, Grubbing, and Haul (included under #5 below).	0.00	AC	\$12,000	\$0	
	Temporary Tree Protection Fence	320	LF	\$7	\$2,240	\$2,240
4 EARTHWORK						
	Excavation	6,500	CY	\$13	\$84,500	
	Embankment	1,100	CY	\$4	\$4,400	
	Other pond work	1	LS	\$10,000	\$10,000	\$98,900
5 BACKWATER STORAGE*						
	On channel areas	300	LF	\$820	\$246,000	\$246,000
6 EROSION CONTROL						
	Water Pollution / Erosion Control	1	LS	\$10,000	\$10,000	
	Silt Fencing	800	LF	\$7	\$5,600	\$15,600
7 STRUCTURES						
	Inlet structure	1	EA	\$10,000	\$10,000	
	Outlet structure	1	EA	\$10,000	\$10,000	
	Piping	200	LF	\$50	\$10,000	\$10,000
8 LANDSCAPE FOR RECREATIONAL USE		1	LS	\$20,000	\$20,000	\$20,000
9 LANDSCAPE ESTABLISHMENT (3 Years)		1	LS	\$24,000	\$24,000	\$24,000
SUB TOTAL						\$440,300
25% CONTINGENCY						\$110,075
TOTAL CONSTRUCTION COSTS						\$550,375
SITE ACQUISITION COSTS						required
ENGINEERING / ADMINISTRATION (30%)						\$165,113
TOTAL CAPITAL PROJECT IMPLEMENTATION COSTS						\$715,488
ANNUAL MAINTENANCE						required

* = Cost includes planting, erosion control, and clearing and grubbing.

CIP #2 - Lot 9
Enhancements
Figure 4

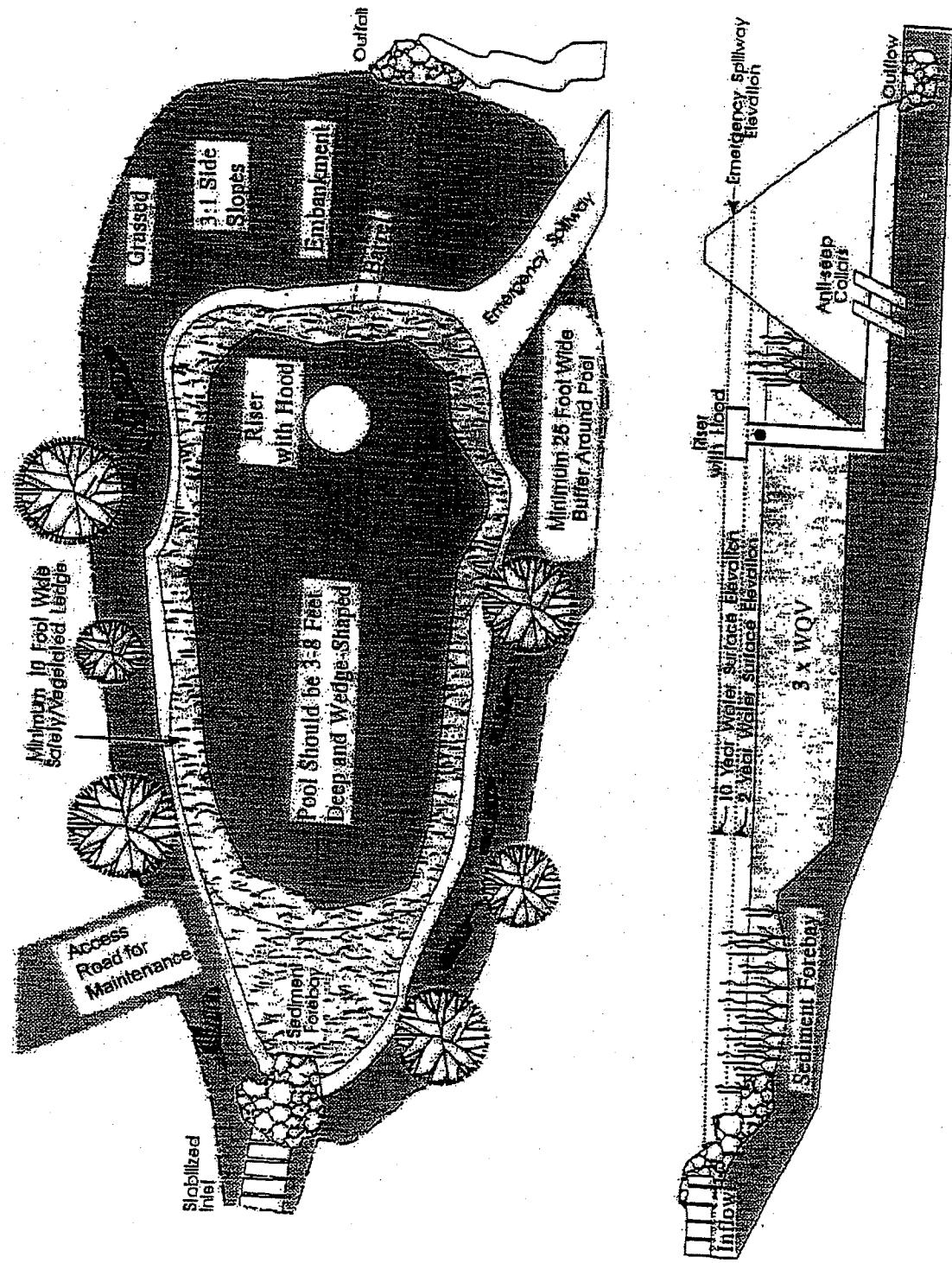


Figure 5

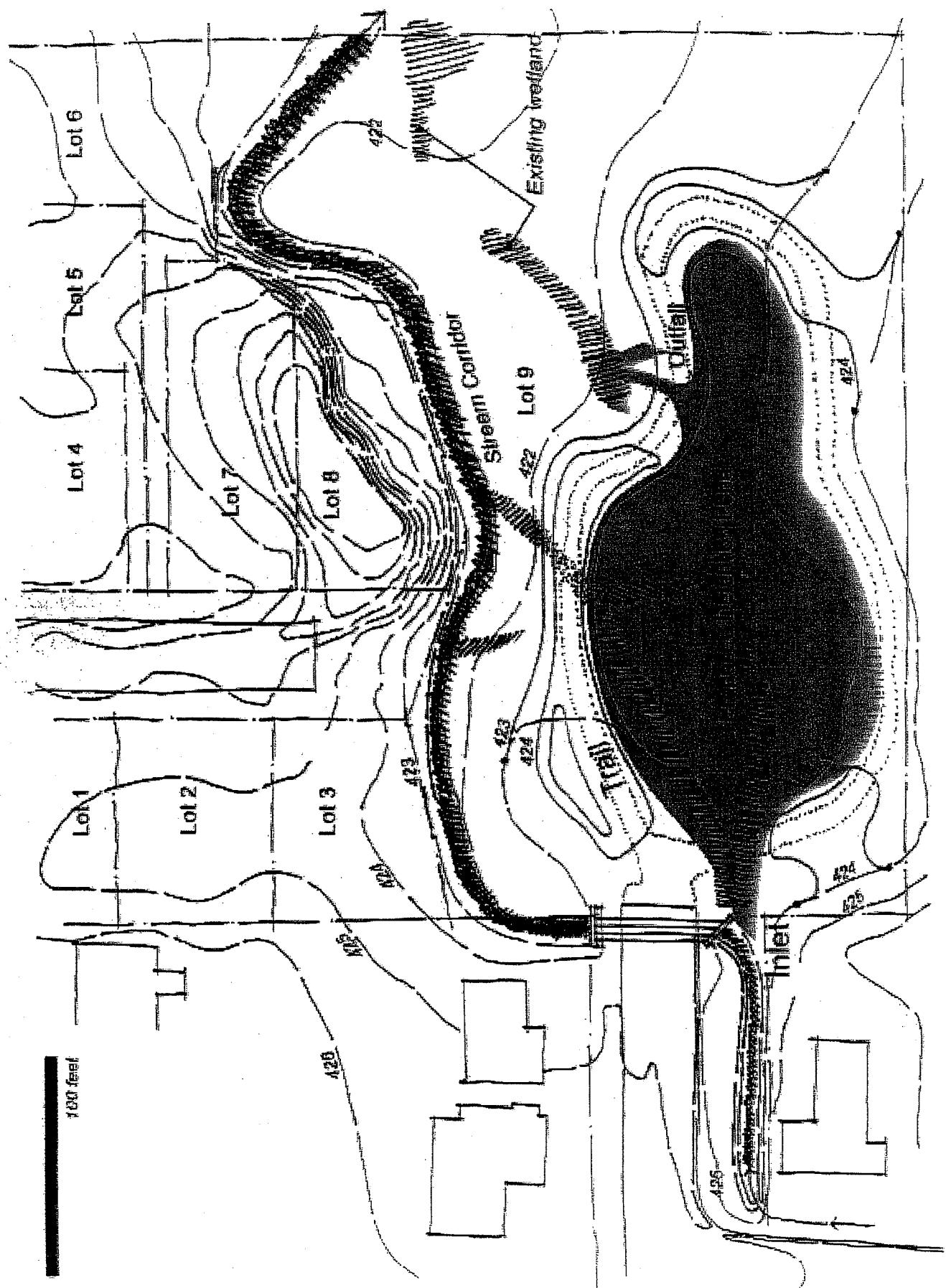


Figure 6

PROJECT SUMMARY SHEET

Project Title: Runoff from Western Hills (CIP #3)

Problem Description: Increased post-development runoff from steep slopes in western hills can not adequately be controlled or maintained at pre-development levels through conventional means (i.e., detention and/or infiltration). The culvert at Territorial Crossing 1,150 ft. south of Bolton Rd. is expected to be under capacity at build-out.

Project Description: Construct the following projects to provide storage and water quality improvements.

- Provide additional detention storage for flood control and water quality within Southwest Area Plan development

Project Benefits: - Reduces private property flooding, provides water quality benefits through processes of settling of particulates and associated pollutants and could potentially eliminate the need for the Territorial Culvert replacement.

Estimated Costs

Construction Cost	\$ 194,550
Site Acquisition	may be required
Engineering & Administration	\$ 58,365
Capital Project Implementation	\$ 252,915
Annual Maintenance Costs	required

Note: Does not include costs related to permitting (i.e., 1200C).

Maintenance Requirements:

Detention Pond: Inspect and clean inlet and outlet, maintain vegetation, inspect sediment loading, remove sediment, remove debris, inspect separation berm.

Cascades: Inspect and clean storm drain system, inspect and remove sediments and debris, inspect weirs.

Assumptions:

- Approximately 2 acre-feet of storage is required to account for increased runoff due to development in upstream basin areas draining into the Southwest Area Plan development. It should be noted that the storage was sized based on the area within the City and West of the SAP draining into the SAP site (i.e., approximately 35 acres). The basin areas draining into south side of the SAP was not included as this area is included outside of the UGB and therefore un-developable. If the developer in the upstream area is able to implement a cascade-style street (see attached example from Seattle Public Utilities), this is recommended and would provide excess storage for additional flood protection in addition to providing additional open-space and habitat functions.

- It is assumed that storage would be provided along the course of drainage that flows from west to east in the northern portion of the SAP. Specifically, lots #55 - #59 and lots #77 - #80 were considered.

- The developer in the upstream area would be responsible for increasing the capacity of the culvert that directs drainage from their site under Bolton Rd. and onto the SAP.

- Most of storage (4 acre feet) can be obtained from SAP (potential sites would be lots 55-62, 77-80, and lot 3). The number of lots that would be needed would be based on the depth of the ponds and the pond depths would be based on groundwater elevations). The remainder of the storage (1 acre-foot) would occur in the cascades on the new development west of the SAP.

- Planting design by a landscape architect would be needed in advance of site development. The plant list would need to be developed by the saturation zone to ensure low maintenance plant materials (i.e., adapted to summer drought and winter rains).

- Traffic control and storm drainage system costs will be included in construction of the new development west of the SAP.

Project Cost Estimate Runoff from Western Hills (CIP #3) City of Veneta, OR

Date: November 12, 2004

Seattle Public Utilities

[SPU Home](#)

[Services](#)

[About SPU](#)

[Engineering](#)

[Directory](#)

News
Careers
Management
Garbage System
Recycling System
Yard System
Water System
>> Drainage & Sewer System

110th Cascade Project

SPU and Seattle Department of Transportation replaced the existing ditch and culvert system along 4 blocks of Northwest 110th Street, between Greenwood Avenue North and Third Avenue Northwest in the Piper's Creek Watershed with a "Cascade" model natural drainage system.

The project is a series of stair-stepped natural pools that slow damaging stormwater flows, reduce flooding, and trap pollutants before they reach Piper's Creek. Stormwater flow from approximately 21 acres is managed through this natural infrastructure.

Benefits of design

A "Cascade" prototype is a natural drainage design utilized on steep, residential streets. This design:

- Manages high volumes of stormwater from many acres of watershed area (5 to 50 acres).
- Provides excellent water quality benefits.
- Slows stormwater velocity before reaching the creek.
- Locates swales on one side of the roadway.
- Locates a sidewalk on the opposite side of the roadway.
- Adds extensive tree and shrub cover.

Construction complete

The construction phase has been completed. The replanting and landscaping phase, which involves both sides of the street, took place between winter and spring of 2002-2003. Seattle Public Utilities will conduct ongoing monitoring of stormwater flow and velocity on the project.

Related Links

[Piper's Creek- Creek Restoration](#)

[110th Cascade Project Table of Contents](#)

[Introduction](#)

[Technical Information](#)

[Contract Specifics](#)
[Div 0 \(PDF File\)](#)

[Scope \(PDF File\)](#)

[110th Cascade Plans \(PDF File\)](#)

[Community Update \(PDF File\)](#)

[Contract Specifics](#)
[Div1-9 \(PDF File\)](#)

[Objectives & Goals \(PDF File\)](#)

[<< Back to Natural Drainage Systems](#)

 Customer Service
Call (206) 684-3000

NW 110th Project Goals and Objectives

May 3, 2001

Where: Project area is in the NW portion of the city. Along NW 110th, from 3rd Avenue NW to Greenwood Ave NW. Project area is within right-of way only, and all work will be outside of street. The site has a combination of slopes, ranging from 1-8%.

Problem Statement: The 21-acre drainage basin collected and conveyed along 110th contributes high flows (18 cfs for the 25-year storm) and pollutants to Pipers Creek. Additionally the culvert under 3rd Ave NW experiences overtopping from flows from NW 110th.

Project Description: This project addresses local neighborhood drainage improvements. This project will redesign and configure the current asphalt lined drainage ditch and culvert system to address the objectives described below.

Objective: Provide alternative drainage improvements achieving water quantity, water quality benefits, while meeting stormwater conveyance and pedestrian and vehicle safety standards. Provide these improvements at minimum cost. Goals below are listed in decreasing order of priority.

Goal 1: Establish and adhere to Safety Standards

Maximum depth of standing water criteria: 1-foot

Maximum time of standing water: 24-hours after storm-event ends

Have SEATRAN explain vehicle recovery distance guidelines and follow if possible.

Achievement: Involve SDOT (formerly SEATran) throughout the design phase of the project and during construction for any changes.

Goal 2: Assure conveyance of 25-yr, 24-hr storm through full length of project, including culvert under 3d Ave NW.

Method: Assess conveyance capacity of culvert. If culvert is undersized, provide culvert replacement plan.

Achievement: Replaced culvert under 3rd Ave NW to assure conveyance of 25-year, 24-hour storm.

Goal 3: Provide Detention

Option A: Detain flows generated by full drainage basin to reduce 2-year, 24-hr storm to predeveloped forested till conditions. (Roughly 1-acre foot)

Option B: Provide maximum volume of detention during 2-year, 24-hr storm. At minimum detain flows from adjacent residence and street.

Method: Surface detention, detention pipes under surface system as cost allows

Achievement: (option B) The volume is roughly equivalent to detaining the flows from the street area adjacent the project (1603'*60', assuming 85% imperv.) to predeveloped forested conditions

Goal 4: Provide Water Quality Improvement as an added benefit

No set criteria of treating full water quality storm (6-month, 24-hr)

Method: Provide maintenance accessible sedimentation cells. Provide maximum vegetated flow path as site allows.

Achievement: Involved DWW Operations and Maintenance in the design, assuring a design that is serviceable by DWW crews.

Achievement: Provided 501 feet of swale length out of a total of 1063 feet of project length (which includes existing alleys, sidestreets, and driveways)

Achievement: Provided a total of 350 feet of the 501 foot total that is greater than or equal to the minimum width requirement of 7.5 feet for water quality.

Goal 5: Minimize project costs

Method: Design project to minimize construction costs.

Achievement: Use soil wrap walls, minimize pavement cuts and amount of pipe and hard structures, use grading to achieve construction of improvement that meets the quality/quantity goals.

Goal 6: Provide aesthetic improvements in project area without creating an "attractive nuisance"

Method: Uniform vegetation down length of project. Ask homeowners preference of grass versus a more "wild" native vegetation look. Use artistic flow control method, funded by "1% for art".

Achievement: Choices of numbers, species and sizes of plants to approximate the look of SEAStreet pilot.

Achievement: Use an artistic flow control method, with size and shape of ponds and transitions between them. Use "soil wrap" walls as a method of reducing costs and returning a more aesthetic look.

Did not utilize Seattle Arts Commission in the design process, project inception was too late for 2002 involvement by artist.

Goal 7: Maximize use of recycled materials

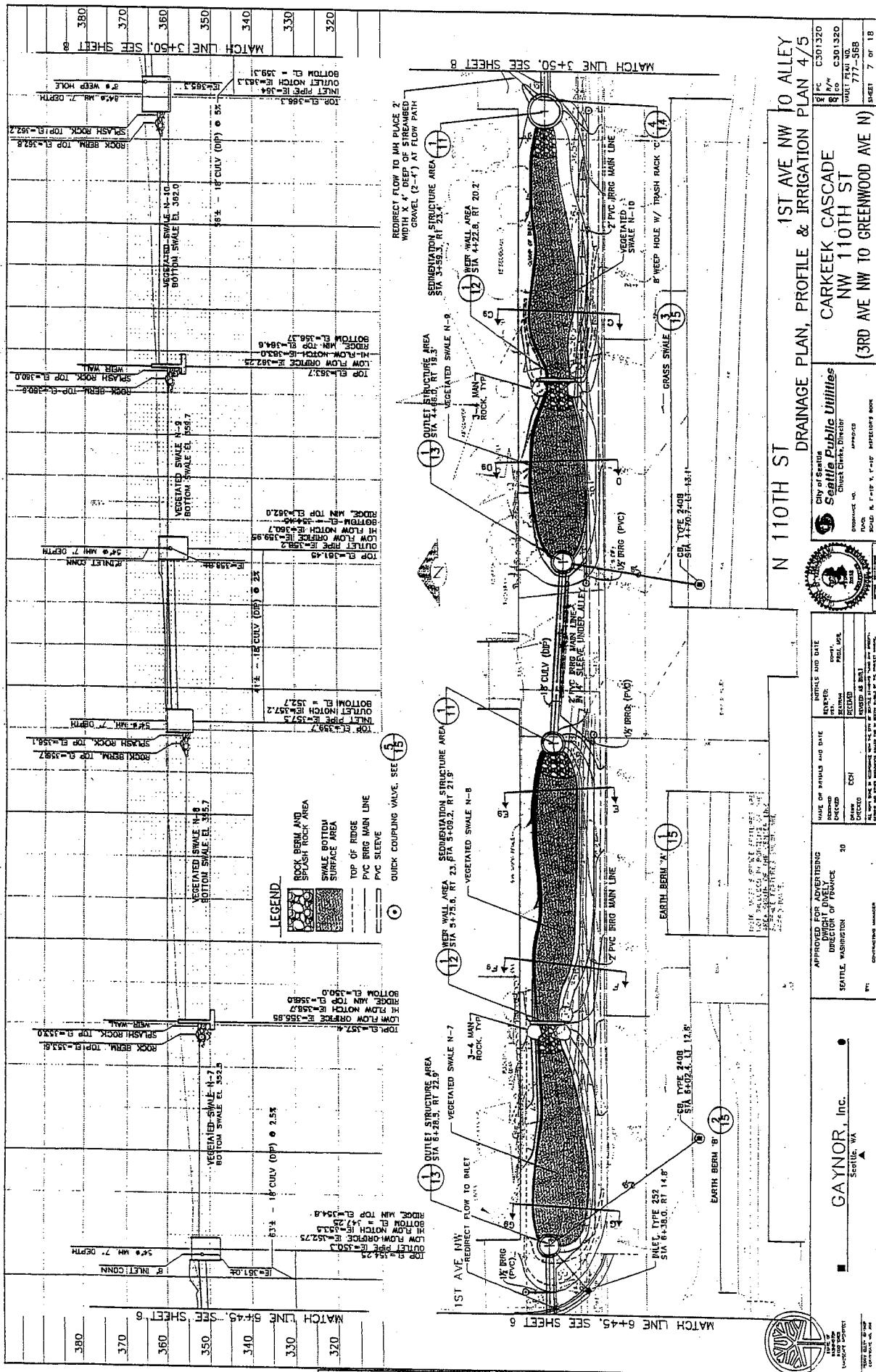
Method: Look for construction "waste" at scrap yards and by contacting other agencies. If post consumer products unavailable, contact manufacturers for "seconds".

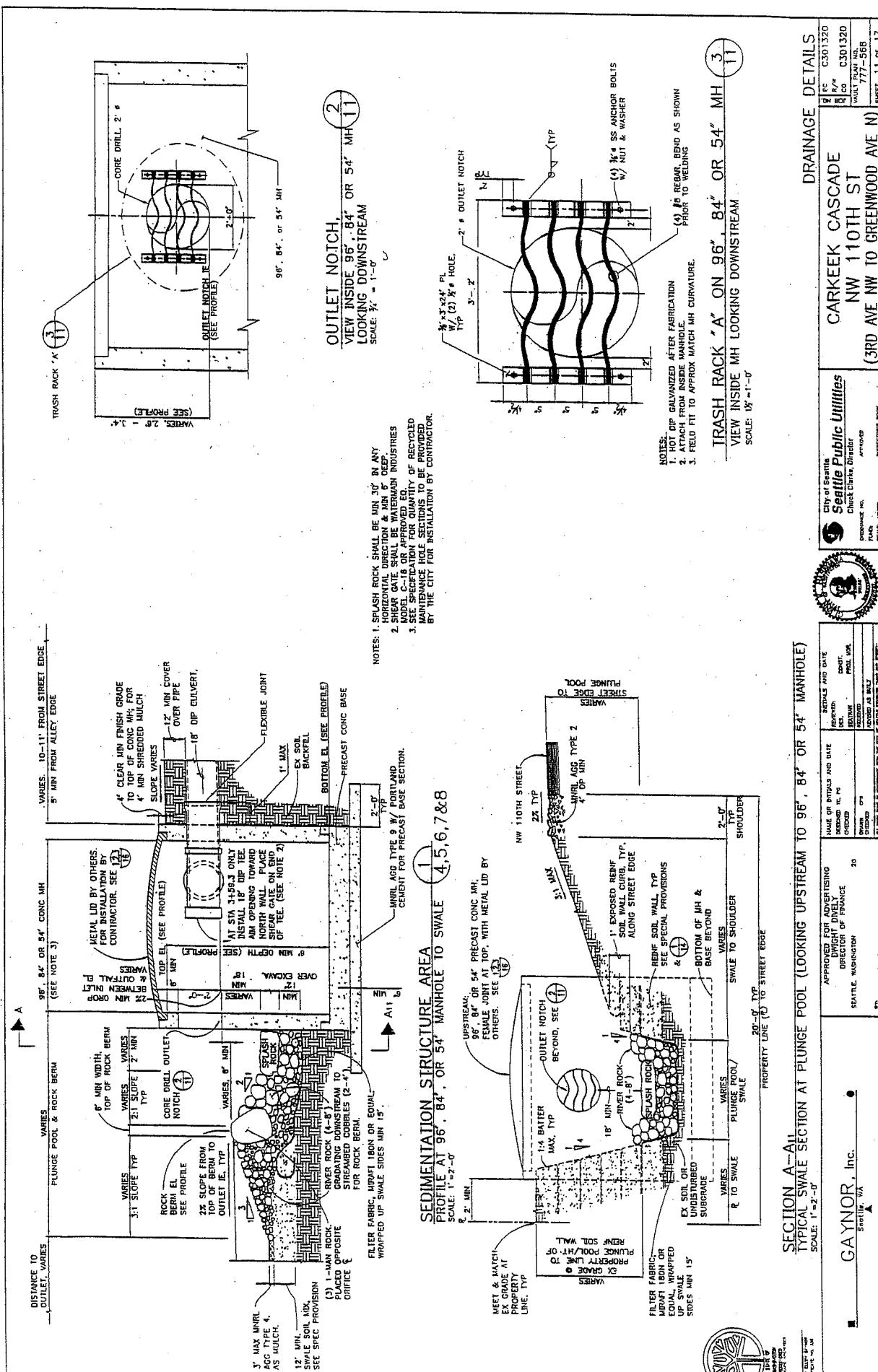
Achievement: Identified construction waste and seconds at Hanson Pipe in Tacoma pre-construction. However, during construction it was determined that new product was a superior choice.

Need to educate Construction Management and Drainage/Wastewater Design Engineers on the use of recycled "seconds" for structures in right-of-way, but not in the road section.

Goal 8: Involve community

Method: Communications staff work with design team to inform and solicit input from residents. 3-dimensional modeling of project if necessary. Involve volunteer coordinator, Kathy Minch, for post construction events.


Achievement: Met with 100% of affected property owners one-on-one pre-construction. Held two community open-houses pre-construction, provided bi-weekly construction updates during construction. Involved watershed educator Beth Miller in community meetings and outreach.


Project Justification:

1. Improve management of high volume surface water entering sensitive receiving water.
2. Improve quality of urban runoff entering creek system
3. Use project as a pilot to evaluate improvements to the informal drainage system.
4. Address stormwater management problem that was identified under Greenwood preliminary engineering study and Piper Creek Phase 2 work.

Project Schedule:

1. Preliminary Engineering occurred in 2000
2. Design 2ndQ 2001 to 1stQ 2002
3. Project construction and completion Spring/Summer 2002

